Exact Spike Train Inference Via 0 Optimization
نویسندگان
چکیده
Abstract: In recent years, new technologies in neuroscience have made it possible to measure the activities of large numbers of neurons in behaving animals. For each neuron, a fluorescence trace is measured; this can be seen as a first-order approximation of the neuron’s activity over time. Determining the exact time at which a neuron spikes on the basis of its fluorescence trace is an important open problem in the field of computational neuroscience. Recently, a convex optimization problem involving an `1 penalty was proposed for this task. In this paper, we slightly modify that recent proposal by replacing the `1 penalty with an `0 penalty. In stark contrast to the conventional wisdom that `0 optimization problems are computationally intractable, we show that the resulting optimization problem can be efficiently solved for the global optimum using an extremely simple and efficient dynamic programming algorithm. Our R-language implementation of the proposed algorithm runs in a few minutes on fluorescence traces of 100, 000 timesteps. Furthermore, our proposal leads to substantially better results than the previous `1 proposal, on synthetic data as well as on two calcium imaging data sets. R-language software for our proposal is now available at https://github.com/ jewellsean/LZeroSpikeInference and will be available soon on CRAN in the package LZeroSpikeInference.
منابع مشابه
An Overview of Bayesian Methods for Neural Spike Train Analysis
Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial overview of B...
متن کاملReconstruction of sparse connectivity in neural networks from spike train covariances
The inference of causation from correlation is in general highly problematic. Correspondingly, it is difficult to infer the existence of physical synaptic connections between neurons from correlations in their activity. Covariances in neural spike trains and their relation to network structure have been the subject of intense research, both experimentally and theoretically. The influence of rec...
متن کاملInnovative Methodology Fast Nonnegative Deconvolution for Spike Train Inference From Population Calcium Imaging
Vogelstein JT, Packer AM, Machado TA, Sippy T, Babadi B, Yuste R, Paninski L. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J Neurophysiol 104: 3691–3704, 2010. First published June 16, 2010; doi:10.1152/jn.01073.2009. Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal popul...
متن کاملThe Computational Structure of Spike Trains
Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal stat...
متن کاملFast nonnegative deconvolution for spike train inference from population calcium imaging.
Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from a raw fluorescence movie is a nontrivial problem. This work presents a fast nonnegative deconvolution filter to infer the approximately most likely spike train of each neuron, given the fluores...
متن کامل